Low-rank update of preconditioners for the nonlinear Richards equation

نویسندگان

  • Luca Bergamaschi
  • Rafael Bru
  • Angeles Martinez
  • José Mas
  • Mario Putti
چکیده

Preconditioners for the Conjugate Gradient method are studied to solve the Newton system with symmetric positive definite (SPD) Jacobian. Following the theoretical work in [1] we start from a given approximation of the inverse of the initial Jacobian, and we construct a sequence of preconditioners by means of a low rank update, for the linearized systems arising in the Picard-Newton solution of the nonlinear discretized Richards equation. Numerical results onto a very large and realistic test case show that the proposed approach is more efficient, in terms of iteration number and CPU time, as compared to computing the preconditioner of choice at every nonlinear iteration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selection of Intermodal Conductivity Averaging Scheme for Unsaturated Flow in Homogeneous Media

The nonlinear solvers in numerical solution of water flow in variably saturated soils are prone to convergence difficulties. Many aspects can give rise to such difficulties, like very dry initial conditions, a steep pressure gradient and great variation of hydraulic conductivity occur across the wetting front during the infiltration of water.  So, the averaging method applied to compute hydraul...

متن کامل

Quasi-Newton acceleration of ILU preconditioners for nonlinear two-phase flow equations in porous media

In this work, preconditioners for the iterative solution by Krylov methods of the linear systems arising at each Newton iteration are studied. The preconditioner is defined by means of a Broyden-type rank-one update of a given initial preconditioner, at each nonlinear iteration, as described in [5] where convergence properties of the scheme are theoretically proved. This acceleration is employe...

متن کامل

Low-rank update of preconditioners for the inexact Newton method with SPD Jacobian

In this note preconditioners for the Conjugate Gradient method are studied to solve the Newton system with a symmetric positive definite Jacobian. In particular, we define a sequence of preconditioners built by means of BFGS rank-two updates. Reasonable conditions are derived which guarantee that the preconditioned matrices are not far from the identity in a matrix norm. Some notes on the imple...

متن کامل

A Class of Efficient Preconditioners with Multilevel Sequentially Semiseparable Matrix Structure

This paper presents a class of preconditioners for sparse systems arising from discretized partial differential equations (PDEs). In this class of preconditioners, we exploit the multilevel sequentially semiseparable (MSSS) structure of the system matrix. The off-diagonal blocks of MSSS matrices are of low-rank, which enables fast computations of linear complexity. In order to keep the low-rank...

متن کامل

SILCA-Newton-Krylov: Robust and Efficient Time-Domain VLSI Circuit Simulation by Krylov-Subspace Iterative Methods with Quasi-Newton Preconditioners

In this paper, we present SILCA-Newton-Krylov, a new method for accurate, efficient and robust timedomain VLSI circuit simulation. Similar to SPICE, SILCA-Newton-Krylov uses time-difference and Newton-Raphson for solving nonlinear differential equations from circuit simulation. But different from SPICE, SILCA-Newton-Krylov explores a preconditioned flexible generalized minimal residual (FGMRES)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical and Computer Modelling

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2013